34 research outputs found

    Best-fit quasi-equilibrium ensembles: a general approach to statistical closure of underresolved Hamiltonian dynamics

    Get PDF
    A new method of deriving reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a set of resolved variables that define a model reduction, the quasi-equilibrium ensembles associated with the resolved variables are employed as a family of trial probability densities on phase space. The residual that results from submitting these trial densities to the Liouville equation is quantified by an ensemble-averaged cost function related to the information loss rate of the reduction. From an initial nonequilibrium state, the statistical state of the system at any later time is estimated by minimizing the time integral of the cost function over paths of trial densities. Statistical closure of the underresolved dynamics is obtained at the level of the value function, which equals the optimal cost of reduction with respect to the resolved variables, and the evolution of the estimated statistical state is deduced from the Hamilton-Jacobi equation satisfied by the value function. In the near-equilibrium regime, or under a local quadratic approximation in the far-from-equilibrium regime, this best-fit closure is governed by a differential equation for the estimated state vector coupled to a Riccati differential equation for the Hessian matrix of the value function. Since memory effects are not explicitly included in the trial densities, a single adjustable parameter is introduced into the cost function to capture a time-scale ratio between resolved and unresolved motions. Apart from this parameter, the closed equations for the resolved variables are completely determined by the underlying deterministic dynamics

    A Mean-field statistical theory for the nonlinear Schrodinger equation

    Full text link
    A statistical model of self-organization in a generic class of one-dimensional nonlinear Schrodinger (NLS) equations on a bounded interval is developed. The main prediction of this model is that the statistically preferred state for such equations consists of a deterministic coherent structure coupled with fine-scale, random fluctuations, or radiation. The model is derived from equilibrium statistical mechanics by using a mean-field approximation of the conserved Hamiltonian and particle number for finite-dimensional spectral truncations of the NLS dynamics. The continuum limits of these approximated statistical equilibrium ensembles on finite-dimensional phase spaces are analyzed, holding the energy and particle number at fixed, finite values. The analysis shows that the coherent structure minimizes total energy for a given value of particle number and hence is a solution to the NLS ground state equation, and that the remaining energy resides in Gaussian fluctuations equipartitioned over wavenumbers. Some results of direct numerical integration of the NLS equation are included to validate empirically these properties of the most probable states for the statistical model. Moreover, a theoretical justification of the mean-field approximation is given, in which the approximate ensembles are shown to concentrate on the associated microcanonical ensemble in the continuum limit.Comment: 24 pages, 2 figure

    Reduced Models of Point Vortex Systems

    Get PDF
    Nonequilibrium statistical models of point vortex systems are constructed using an optimal closure method, and these models are employed to approximate the relaxation toward equilibrium of systems governed by the two-dimensional Euler equations, as well as the quasi-geostrophic equations for either single-layer or two-layer flows. Optimal closure refers to a general method of reduction for Hamiltonian systems, in which macroscopic states are required to belong to a parametric family of distributions on phase space. In the case of point vortex ensembles, the macroscopic variables describe the spatially coarse-grained vorticity. Dynamical closure in terms of those macrostates is obtained by optimizing over paths in the parameter space of the reduced model subject to the constraints imposed by conserved quantities. This optimization minimizes a cost functional that quantifies the rate of information loss due to model reduction, meaning that an optimal path represents a macroscopic evolution that is most compatible with the microscopic dynamics in an information-theoretic sense. A near-equilibrium linearization of this method is used to derive dissipative equations for the low-order spatial moments of ensembles of point vortices in the plane. These severely reduced models describe the late-stage evolution of isolated coherent structures in two-dimensional and geostrophic turbulence. For single-layer dynamics, they approximate the relaxation of initially distorted structures toward axisymmetric equilibrium states. For two-layer dynamics, they predict the rate of energy transfer in baroclinically perturbed structures returning to stable barotropic states. Comparisons against direct numerical simulations of the fully-resolved many-vortex dynamics validate the predictive capacity of these reduced model

    Analysis of statistical equilibrium models of geostrophic turbulence

    Get PDF
    Statistical equilibrium lattice models of coherent structures in geostrophic turbulence, formulated by discretizing the governing Hamiltonian continuum dynamics, are analyzed. The first set of results concern large deviation principles (LDP's) for a spatially coarse-grained process with respect to either the canonical and/or the microcanonical formulation of the model. These principles are derived from a basic LDP for the coarse-grained process with respect to product measure, which in turn depends on Cramer's Theorem. The rate functions for the LDP'Ĺ› give rise to variational principles that determine the equilibrium solutions of the Hamiltonian equations. The second set of results addresses the equivalence or nonequivalence of the microcanonical and canonical ensembles. In particular, necessary and sufficient conditions for a correspondence between microcanonical equilibria and canonical equilibria are established in terms of the concavity of the microcanonical entropy. A complete characterization of equivalence of ensembles is deduced by elementary methods of convex analysis

    An Introduction to the Thermodynamic and Macrostate Levels of Nonequivalent Ensembles

    Get PDF
    This short paper presents a nontechnical introduction to the problem of nonequivalent microcanonical and canonical ensembles. Both the thermodynamic and the macrostate levels of definition of nonequivalent ensembles are introduced. The many relationships that exist between these two levels are also explained in simple physical terms.Comment: Revtex4, 5 pages, 1 figur

    Thermodynamic versus statistical nonequivalence of ensembles for the mean-field Blume-Emery-Griffiths model

    Get PDF
    We illustrate a novel characterization of nonequivalent statistical mechanical ensembles using the mean-field Blume-Emery-Griffiths (BEG) model as a test model. The novel characterization takes effect at the level of the microcanonical and canonical equilibrium distributions of states. For this reason it may be viewed as a statistical characterization of nonequivalent ensembles which extends and complements the common thermodynamic characterization of nonequivalent ensembles based on nonconcave anomalies of the microcanonical entropy. By computing numerically both the microcanonical and canonical sets of equilibrium distributions of states of the BEG model, we show that for values of the mean energy where the microcanonical entropy is nonconcave, the microcanonical distributions of states are nowhere realized in the canonical ensemble. Moreover, we show that for values of the mean energy where the microcanonical entropy is strictly concave, the equilibrium microcanonical distributions of states can be put in one-to-one correspondence with equivalent canonical equilibrium distributions of states. Our numerical computations illustrate general results relating thermodynamic and statistical equivalence and nonequivalence of ensembles proved by Ellis, Haven, and Turkington [J. Stat. Phys. 101, 999 (2000)].Comment: 13 pages, 4 figures, minor typos corrected and one reference adde

    An optimization principle for deriving nonequilibrium statistical models of Hamiltonian dynamics

    Full text link
    A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. As in standard projection operator methods, a set of resolved variables is selected to capture the slow, macroscopic behavior of the system, and the family of quasi-equilibrium probability densities on phase space corresponding to these resolved variables is employed as a statistical model. The macroscopic dynamics of the mean resolved variables is determined by optimizing over paths of these probability densities. Specifically, a cost function is introduced that quantifies the lack-of-fit of such paths to the underlying microscopic dynamics; it is an ensemble-averaged, squared-norm of the residual that results from submitting a path of trial densities to the Liouville equation. The evolution of the macrostate is estimated by minimizing the time integral of the cost function. The value function for this optimization satisfies the associated Hamilton-Jacobi equation, and it determines the optimal relation between the statistical parameters and the irreversible fluxes of the resolved variables, thereby closing the reduced dynamics. The resulting equations for the macroscopic variables have the generic form of governing equations for nonequilibrium thermodynamics, and they furnish a rational extension of the classical equations of linear irreversible thermodynamics beyond the near-equilibrium regime. In particular, the value function is a thermodynamic potential that extends the classical dissipation function and supplies the nonlinear relation between thermodynamics forces and fluxes

    Optimal thermalization in a shell model of homogeneous turbulence.

    No full text
    We investigate the turbulence-induced dissipation of the large scales in a statistically homogeneous flow using an “optimal closure,” which one of us (BT) has recently exposed in the context of Hamiltonian dynamics. This statistical closure employs a Gaussian model for the turbulent scales, with corresponding vanishing third cumulant, and yet it captures an intrinsic damping. The key to this apparent paradox lies in a clear distinction between true ensemble averages and their proxies, most easily grasped when one works directly with the Liouville equation rather than the cumulant hierarchy. We focus on a simple problem for which the optimal closure can be fully and exactly worked out: the relaxation arbitrarily far-from-equilibrium of a single energy shell towards Gibbs equilibrium in an inviscid shell model of 3D turbulence. The predictions of the optimal closure are validated against DNS and contrasted with those derived from EDQNM closure
    corecore